\qquad Per: \qquad
Complete the following. Show all of your work for any calculations. Box or circle your answer.

1. Compare and contrast the following:
a. Acid properties and base properties
b. Arrhenius acid and base.
c. Bronsted-Lowry acid and base
d. Conjugate acid and conjugate base
e. Monoprotic acid and polyprotic acid
f. Binary acid and ternary acid
g. Strong acid and weak acid (Include a list of strong acids)
h. Strong base and weak base (include a list of strong bases)
2. Identify the acid/base pairs (use $B A, B B, c a$ and $c b$):
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
b. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{3}{ }^{2-} \leftrightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-}$
3. What are the pH values for the following? Determine if the solution is acidic or basic.
a. $\left[\mathrm{H}^{+}\right]=2.4 \times 10^{-6} \mathrm{M}$
b. $9.1 \times 10^{-9} \mathrm{M} \mathrm{HCl}$
4. Calculate the $\left[\mathrm{H}^{+}\right]$for the following.
a. $\mathrm{pH}=13.20$
b. $\mathrm{pH}=6.45$
5. Calculate the molarity for each of substance specified in the following problems.
a. $\quad 25.5 \mathrm{~mL}$ of 0.75 M hydrochloric acid is used to titrate 10.0 mL of calcium hydroxide. What is the concentration (M) of the base? $\quad \mathbf{2 H C l}+\mathbf{C a}(\mathbf{O H})_{2} \rightarrow \mathrm{CaCl}_{2}+\mathbf{2 H}_{2} \mathrm{O}$
b. Determine the concentration (M) of 15 mL of nitric acid $\left(\mathrm{HNO}_{3}\right)$ that is titrated with 10.5 mL of 2.5 M NaOH .
6. What would you expect the pH to be at the equivalence point for the following titrations:
a. strong acid-strong base \qquad b. strong acid-weak base \qquad c. weak acid-strong base \qquad
7. Complete the following statements.
a. The process used to determine the concentration of an unknown solution is called \qquad .
b. A reaction where an acid and a base react to form salt and water is called a \qquad reaction.
c. A substance that can act as both an acid and a base is called a(n) \qquad substance.
d. A hydrogen ion and a water molecule form a \qquad ion. The formula is \qquad .
e. The equilibrium (ion product) constant of water has a symbol of \qquad and a value of \qquad .
f. The \qquad has values of 0-14 and tells us whether a substance is an acid or a base.
g. The \qquad is reached when the moles of H^{+}and moles of OH^{-}are equal.
h. The \qquad is reached when the indicator changes color during a titration.
