Chemistry Semester 1 Test Review

Name: _____

_Pd: ____

Ш

(Formula Sheet) –given to you on the semester test

	Common	Polyatomic Io	ns	Mart 8	METALS
Ion	Name	Ion	Name	active	Rubidium
NH_4^+	ammonium	104	periodate		Potassium
NO2	nitrite	$C_2H_3O_2^-$	acetate	- ° - 1	Sodium
NO3-	nitrate	$H_2PO_4^-$	dihydrogen phosphate		Magnesium
HSO4-	hydrogen sulfate	CO32-	carbonate		Aluminum Mannanesa
OH	hydroxide	SO12-	sulfite		Zinc
CN	cyanide	SO4 2-	sulfate		Iron
MnO_4^-	permanganate	S2032-	thiosulfate		Tit
HCO3	hydrogen carbonat	e 022-	peroxide		Lead
ClO-	hypochlorite	CrO42-	chromate		Copper Silver
ClO_2^-	chlorite	Cr2072-	dichromate	Least	Platinum
ClO3-	chlorate	HPO_4^{2-}	hydrogen phosphate	active	Gold
ClO_4^-	perchlorate	PO43-	phosphate		HALOGENS
BrO3-	bromate	AsO4 ³⁻	arsenate	Most	Fluorine
10,-	iodate			active	Chlorine
	1. 			active	lodine
Electroneg	ativity Difference	Bond Type			
04		Non-polar			
.41 - 1.7		Polar Covalen	t		
>1.7		Ionic			

Semester Test Breakdown

Standards	Number of test questions
HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.	MC: 17 PT: 1
HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties	MC: 12 PT: 1
HS-PS1-3 Plan and carry out an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles	MC: 15
HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction	MC: 12 PT: 1
HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay	MC: 6 PT: 1
HS-ESS1-1 Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.	MC: 1
HS-ESS1-3 Communicate scientific ideas about the way stars, over their life cycle, produce elements	MC: 3
HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.	MC: 4

Total Questions: 70 points Performance Task: 27 points Overall: 97 points

A. Unit 1: Atomic Structure and Nuclear Chemistry

1.	You should be fam	iliar with the following	vocabulary. Circle any v	vords that are unfamiliar	& define them on a separ	rate sheet of paper.
	Atomic number	Metal	Period	Nonmetal	Bohr	alpha decay
	Group	Noble gas	Mass number	Rutherford	fusion	beta decay
	Isotope	Nucleus	Metalloid	Thomson	fission	

- 2. What is the difference between fusion and fission?
- 3. What elements are most abundant in the universe? What elements are found in young stars?
- 4. Describe how elements are formed in stars.
- 5. What is an alpha particle?
- 6. What is a beta particle?
- 7. What type of radiation is the most penetrating: alpha, beta or gamma? Least penetrating?
- 8. Both of the isotopes below are undergoing alpha decay. Complete the reaction.

a.	²¹⁰ ₈₄ Po → +	b.	$238_{92}U \rightarrow ___+__$
----	-------------------------------------	----	-------------------------------------

9. Both of the isotopes below are undergoing beta decay. Complete the reaction.

a.	$^{14}_{6}C \rightarrow$	+	b.		$^{90}_{38}Sr \rightarrow$		+	
----	--------------------------	---	----	--	----------------------------	--	---	--

10. Circle "p" proton, "n" neutron, and/or "e" electron. There may be more than one answer.

р	n	e	1+ charge	р	n	e	located in "empty space" around nucleus
р	n	e	1- charge	p	n	e	must be the same in an element and its ion
р	n	e	changes to gain stability (form an ion)	р	n	e	no charge
р	n	e	contributes to most of an element's mass	р	n	e	relatively "big" particle(s) (~1 amu)
р	n	e	determines element's identity	р	n	e	same in different isotopes of the same element
р	n	e	determines element's reactivity	р	n	e	varies in different isotopes of an element
р	n	e	located in nucleus	р	n	e	very small particle(s) (1/1840 amu)

11. How many protons, neutrons and electrons are in the following isotopes?

Isotope Name	Isotope Symbol	Protons	Electrons	Neutrons
Carbon-12				
	15 _N 7			
Chlorine-35				
		92		143

12. There are 2 isotopes of Boron: Boron-10 and Boron-11. Which isotope is more abundant and why?

B. Unit 2: Periodic Table

1. You should be fa	amiliar with the following vocabulary. Ci	rcle any words that are unf	amiliar & define them on a separa	te sheet of paper.
Excited state	Pauli Exclusion Principle	Electronegativity	Atomic radius	Valence electrons
Aufbau principle	Orbital	Lanthanides	Halogens	s block
Energy level	Sublevel	Noble gases	Main block elements	p block
Ground state	Actinides	Transition elements	Shielding effect	d block
Hund's rule	Alkaline earth metals	Alkali metals	Core electrons	f block

2. Know the shape of each set of electron clouds, the number of orbitals & the maximum number of electrons in each sublevel.

Sublevel	Number of orbitals	Maximum number of electrons
S		
р		
d		
f		

3. Know which sublevels and orbitals are in each energy level.

Energy Level	Sublevels (s, p, d, or f)	Number of orbitals
1		
2		
3		
4		

- 4. Be able to write electron configurations for elements from the periodic table. Ex. $F=1s^22s^22p^5$ Write electron configurations for the following:
 - a. Mg ______ b. Zn _____
 - c. Nitrogen
 - d. Lead
- 5. Be able to draw orbital diagrams for elements from the periodic table. Remember that only 2 electrons (drawn as arrows) can fill any orbital (box) and that they need to have opposite spins (one arrow up and one arrow down). Draw orbital diagrams for the following:

a. Mg	
b. O	
c. Si	
d. Ar	
Be able to write electron configurations using noble gas not following:	tation. Ex. $Na = [Ne]3s^1$ Write the noble gas notation for the
a. Br	c. Sr
b. Si	d. K

7. What is the octet rule?

6

8. Be able to use the periodic table to determine the group & period for an element. Complete the following table:

Element	Group Number	Period Number
Na		
0		
Cl		
Р		

9. Be able to describe the properties of the 4 major groups on the periodic table.

Group Number (both)	Group Name	Properties
	Alkali	
	Alkaline Earth	
	Halogens	
	Noble Gas	

10. Be able to describe the properties of metals, metalloids, & nonmetals. Circle "m" metal, "md" metalloid, or "nm" nonmetal.
a. m md nm usually brittle solids & gases
f. m md nm malleable and ductile

b.	m	md	nm	forms negative ions	g.	m	md	nm	poor conductors
c.	m	md	nm	form positive ions	h.	m	md	nm	semiconductors
d.	m	md	nm	good conductors	i.	m	md	nm	shiny, hard, dense

- e. **m md nm** like metals and nonmetals
- 11. Identify what type of element is present: circle Metal (m), Metalloid (md), or Nonmetal (nm).

a.	Fe	m	md	nm	c.	Na	m	md	nm	e.	Н	m	md	nm	g.	Mg	m	md	nm
b.	Si	m	md	nm	d.	He	m	md	nm	f.	U	m	md	nm	h.	Cl	m	md	nm

12. Identify and use the trends on the periodic table including electronegativity, ionization energy, atomic radius, shielding effect and nuclear radius. List the trend down a group and across a period for each.

	Definition	Trend Across a Period	Trend Down a Group	Choose which element has the larger value
				a. Al or B
Electronegativity				b. Fe or Cu
				c. Br or Cl
				d. N or O
Atomic Radius				e. Rb or Fr
				f. P or Mg

13. When atoms form ions, what type (group) of elements do their electron configurations look like? Give an example.

C. Unit 3: Bonding

g. I C

1.	You should be familiar with the following vocabulary. Circle any words that are unfamiliar & define them on a separate sheet of paper.							
	Anion		Polyatomic ion		Lewis structure		Polar covalent bond	
	Cation		Electrolyte		Molecular compou	ind	Structural formula	
	Transition metal		Double bond		Molecular formula	ı	Unshared pair	
	Binary ionic compound		Triple bond		Nonpolar covalent	bond	Valence electrons	
1.	Know which elemen	ts are trans	ition metals. Ci	rcle the transiti	on metals in the fo	ollowing list.		
	Fe	Na	Br	Mg	Со	Cl	Н	Р
	Cu	Κ	Ο	Pb	Zn	Ν	Cr	Mn

Be able to <u>tell and show</u> how atoms gain and lose electrons to become stable. What does nitrogen do and what does calcium do to become stable? Use electron dot structures to show how nitrogen and calcium form a compound. Include the name and formula of the compound that is formed.

3. Determine if the property describes Ionic and Covalent Bonding

a.	Ι	С	Created through the transfer of electrons	h.	I	С	All states of matter at room temperature
b.	Ι	С	Created through the sharing of electrons	i.	I	С	Attraction of + and - ions
c.	Ι	С	Hard yet brittle solids	j.	I	С	Conducts electricity when dissolved in water
d.	Ι	С	High melting and boiling points	k.	I	С	Individual molecules
e.	Ι	С	Low melting and boiling points	1.	I	С	Combination of a metal and a nonmetal
f.	Ι	С	Poor conductor of heat	m.	I	С	Never conducts electricity

- 1. What is the name of the structure of all ionic compound

Always solids at room temperature

5. Describe this basic structure of ionic compounds.

6. How do you know if a bond is ionic or covalent?

Type of Compound (ionic or covalent)	Name	Formula
7.	dinitrogen pentoxide	8.
9.	trisulfur heptoxide	10.
11.	12.	NH ₄ Cl
13.	14.	P4O10
15.	16.	K ₃ PO ₄
17.	zinc hydroxide	18.
19.	iron (II) chloride	20.
21.	22.	MnCO ₃
23.	24.	Sn(HCO ₃) ₄
25.	Silver nitrite	26.
27.	Nickel (III) sulfite	28.
29.	30.	CH ₄

Be able to write names and formulas of ionic and covalent compounds.

Be able to draw Lewis structures.

Compound	Lewis Structure (Structural Formula)	Compound	Lewis Structure (Structural Formula)
31. CCl4		32. H ₂ S	
33. CS ₂		34. C ₂ H ₄	
35. NH ₃		36. CH ₂ O	

37. Use the electronegativity table to determine polar covalent and nonpolar covalent bonds.

- a. A difference in electronegativities from **0-0.4 is** ______ and electrons are shared equally.
- b. A difference of **0.4-1.7 is a(n)** ______ covalent bond and electrons are shared unequally.
- c. A difference of greater than **1.7 is a**(**n**) **_____ bond**. Electrons are transferred rather than shared.
- 38. Determine the electronegativity difference and classify the bonds as polar, nonpolar, or ionic. Then, if the bond is *polar*, label the atoms as slightly (partial) positive and slightly (partial) negative (see examples on page 267).

Bond	Electronegativity Difference	Polar, Nonpolar or Ionic? Why?
Cl—Cl		
C—S		
N—H		
H—S		
Н—О		
Se—Br		
Na—Cl		

D. Unit 4: Chemical Reactions

 1. You should be familiar with the following vocabulary. Circle any words that are unfamiliar & define them on a separate sheet of paper.

 Coefficient
 Decomposition reaction
 Combustion reaction
 Skeleton equation

 Subscript
 Single replacement reaction
 Activity series
 Word equation

 Synthesis reaction
 Double replacement reaction
 Balanced equation
 Diatomic molecules

2. State the Law of Conservation of Mass. How does it apply to chemical reactions?

3. Balance and name the types of reactions for the following equations:

a. Pb (s) + Hg₂SO₄ (s)
$$\rightarrow$$
 PbSO₄ (s) + Hg (l)

- b. ___NH₃ (g) \rightarrow ___N₂ (g) + ___H₂ (g)
- c. $\underline{NaCl}(aq) + \underline{AgNO}_3(aq) \rightarrow \underline{AgCl}(s) + \underline{NaNO}_3(aq)$
- d. <u>C</u> + <u>O</u>₂ \rightarrow <u>CO</u>₂
- e. $C_2H_5OH + O_2 \rightarrow CO_2 + H_2O$

4. Identify the reaction type(s), then complete and balance the following reactions. If the reaction is a single replacement reaction, first determine if the reaction will happen using your activity series. If the reaction does not occur, explain why not.

a.	Reaction Type:	$\underline{\qquad} Fe(s) + \underline{\qquad} O_2(g) \rightarrow$
b.	Reaction Type:	$_$ AlCl ₃ (s) \rightarrow
c.	Reaction Type:	$\underline{\qquad} \operatorname{AlCl}_3(\operatorname{aq}) + \underline{\qquad} \operatorname{K}_2\operatorname{CO}_3(\operatorname{s}) \xrightarrow{}$
d.	Reaction Type:	$\underline{\qquad} \operatorname{KBr}\left(\operatorname{aq}\right) + \underline{\qquad} \operatorname{Cl}_{2}\left(\operatorname{g}\right) \xrightarrow{}$
e.	Reaction Type:	$\Ag(s) + \ZnCO_3(aq) →$

- 5. Write and balance chemical equations for the following. Include states of matter if given.
 - a. Solid calcium carbonate and aqueous sodium sulfate can be produced by mixing aqueous solutions of sodium carbonate and calcium sulfate.
 - b. Will aluminum metal react with copper (II) nitrate, Cu(NO₃)₂, to form aluminum nitrate, Al(NO₃)₃ and solid copper? If so, write the balanced chemical equation.
 - c. Hydrogen and chlorine yields hydrochloric acid, HCl.
- 6. Write & balance chemical equations for the following. You will need to predict the products. Include states of matter if given.
 - a. Water and lithium yields lithium hydroxide and hydrogen gas.
 - b. Solutions of lead (II) nitrate and silver chloride are mixed.
 - c. Water is decomposed into its elements.
 - d. Methane, CH₄, burns in air.

E. Unit 5 R	Review:	Answer the fol	llowing que	stions. Show	v all of yo	our work for any	calculations.
			<u> </u>				

UI	<u>IN 5 KCVICW.</u> Answer the folio	wing questions. Show	<u>m</u> of your work for	any calculations.	
1.	You should be familiar with the followin	ng vocabulary. Circle any word	Is that are unfamiliar & def	ine them on a separate sheet of pape	er.
	Dimensional analysis Ac	tual vield	Stoichiometry	Molar Mass	a
	Scientific notation Exc	cess reactant	Theoretical yield	Molecular Formu	la
	Derived unit Lir	niting reactant	Avogadro's Number	Percent Composit	tion
_	Graphing Mo	ole ratio	Mole		
2.	What is a base unit? List the 5 bas	se units and what quantity e	each represents.		
	a		d		
	b		e		
	с.				
3.	What is dimensional analysis and	how do we use it in chemis	try?		
4.	Convert the following measurement	nts from one metric unit to	another using dimension	onal analysis. Show your wor	<u>k!</u>
	a. 345.67 m = km	b. 0.056 mg =	= g	c. 10.05 L =	mL
_		4. CT			
5.	Be able to determine the appropria	the <u>SI</u> units to use in measu		be the correct <u>SI</u> units to detern	mne:
	a. The distance to Brookings?		c. The mass c	of a bowl of cereal?	
	b. How fast you travel in your ca	r?	d. How much	you weigh?	
6.	What is scientific notation and wh	y do we use it in chemistry	?		
7.	Convert the following to scientific	notation:			
	a. 500000 cm =	b. 67800000	=	c. 0.00000000056 L	, =
8.	What is a mole?				
	• 1 mole =	atoms Fe	• 1 mole =	formula ur	nits of NaCl
	• 1 mole =	molecules of H ₂ O	• 1 mole =	g Fe	
				6	
9.	Calculate the number of moles of a	a gold sample containing 3	$.33 \times 10^{24}$ atoms.		
10	Calculate the grams of 1 25 moles	of magnesium chloride			
10.	Calculate the grants of 1.25 moles	or magnesium emoriae.			
11.	Calculate the grams of 1.34×10^{25}	molecules of propane, C ₃ H	8.		
12.	What is the molar mass of ammon	ium dichromate, (NH4)2Cr2	2O7?		

13. Compare an empirical formula to a molecular formula.

- 14. If the molecular compound of ascorbic acid is C₆H₈O₆, what is the empirical formula?
- 15. Calculate the percent composition of Lead (II) chloride.
- 16. How many moles of ammonium sulfate can be produced if 30.0 mol of NH_3 are reacted with excess H_2SO_4 according to the equation $2NH_3 + H_2SO_4 --> (NH_4)_2SO_4 + H_2$?
- 17. If 20.5 moles of Zn react with excess H₂SO₄ how many grams of ZnSO₄ will be produced? Zn + H₂SO₄ \rightarrow ZnSO₄ + H₂
- 18. For the reaction: $2KClO_3 \rightarrow 2KCl + 3O_2$ How many grams of $KClO_3$ must be decomposed to yield 30.0 grams of oxygen.
- 19. The reactant that limits the amount of product formed is called the ______
- 20. When you determine actual yield you do a(n) (Experiment / Calculation)? When you determine theoretical yield you do a(n) (Experiment / Calculation)?

21. Which is generally greater, the actual yield or the theoretical yield?

- 22. The amount of CaO produced in a reaction is 13.1 g. If the predicted yield was 13.9g,
 - d. What is the actual yield? e. What is the theoretical yield? f. What is the percent yield?
- 23. In the production of lead (II) chloride 24.6 grams were produced according to the following reaction: $Pb(s) + Cl_2(g) \rightarrow PbCl_2(s)$. If the reaction used 21.5 g of lead and excess chlorine, calculate the theoretical yield and the percent yield.

F. Unit 1-5 Multiple Choice: Practice Questions for the Semester Test

1. If matter is uniform throughout and cannot be separated into other substances by physical means, it is				al means, it is
	a.	a compound	c.	a homogeneous mixture
	b.	either an element or a compound	d.	a heterogeneous mixture
2.	Of the follo	wing, only is a chemical reaction.		
	a.	melting of lead	c.	tarnishing silver
	b.	dissolving sugar in water	d.	crushing a stone
3.	In which of	the following numbers are all the zeros significant?		
	a.	100.090090	c.	0.05843
	b.	0.143290	d.	1000
4.	A combinat	ion of sand, salt and water is an example of a		
	a.	homogeneous mixture	c.	compound
	b.	heterogeneous mixture	d.	pure substance
5.	The correct	formula of Iron (III) bromide is		

	a.	FeBr ₂				c.	FeBr
	b.	FeBr ₃				d.	Fe ₃ Br
6.	6. The formula for ammonium carbonate is						
	a.	$(NH_4)_2CO_3$				c.	$(NH_3)_4CO_4$
	b.	NH ₄ CO ₂				d.	$(NH_3)_2CO_3$
7.	Chromium a	nd chlorine form an ionic compound whose formula is	s CrC	Cl	3. The nam	e of	this compound is
	a.	chromium chlorine				c.	monochromium trichloride
	b.	chromium (III) chloride				d.	chromium (III) trichloride
8.	The formula	for aluminum hydroxide is					
	a.	AlOH				c.	Al ₂ (OH) ₃
	b.	Al ₃ OH				d.	Al(OH) ₃
9.	The name of	f the ionic compound $(NH_4)_3PO_4$ is					
	a.	ammonium phosphate				c.	tetrammonium phosphate
	b.	nitrogen hydrogen phosphate				d.	ammonium phosphide
10.	Which form	ula/name pair is <i>incorrect</i> ?					
	a.	Mn(NO ₂) ₂ - manganese (II) nitrite				c.	Mn(NO ₃) ₂ - manganese (II) nitrate
	b.	$Mg(NO_3)_2$ - magnesium nitrate				d.	Mg_3N_2 - magnesium nitrite
11.	Which form	ula/name pair is incorrect?					
	a.	FeSO ₄ - iron (II) sulfate				c.	FeS - Iron (II) sulfide
	b.	$Fe_2(SO_3)_3$ - iron (III) sulfite				d.	$Fe_2(SO_4)_3$ - iron (III) sulfide
12.	The suffix -i	de is used					
	a.	for monoatomic anion names	c.	f	for the nam	e of	the first element in a molecular compound
	b.	for polyatomic cation names	d.	1	or monoato	omic	cations
13.	The formula	for the compound formed between aluminum ions and	d pho	os	phate ions i	is	
101	a.	$Al_3(PO_4)_3$		0.0		с.	$A1(PO_4)_3$
	b.	AlPO ₄				d.	AIP
14	Which meta	I doesn't require having its charge specified in the nan	ne of	ิล	n ionic con	mor	and it forms?
17.	a a	Mn		u		c.	Cu
	b.	Fe				d.	Ca
15	The nucleus	of an atom contains					
15.	a a	electrons				C	protons and neutrons
	u. h	protons electrons neutrons				d.	protons and electrons
16	The element	is the most similar to strentium in chemical and r	huai	ior	1 proportio	с . .	protons and creed ons
10.	a a	I i is the most similar to subintum in chemical and p	JIIYSI		u propertie	s.	Ba
	a. h	Rb				d.	Cs
17	Uorizontal r	awa of the periodic table are known as				u.	
17.		periods				0	motalloida
	a. b	groups				c. d	families
10	U.					u.	Tammes
18.	vertical coll	mins of the periodic table are known as					~~~~~
	a. b	netials				с. d	groups
10	U.					u.	octaves
19.	Elements in	group 1 are known as					11 . 1'
	a.	chalcogens				с.	alkaline earth metals
•	D.	aikali metais				a.	nalogens
20.	Potassium is	a and chlorine is a					
	a.	metal, nonmetal				с.	nonmetal, metal
	b.	metal, metalloid				d.	nonmetal, metalloid
21.	are four	d uncombined, as monatomic species in nature.					
	a.	noble gases				с.	halogens
	b.	alkalı metals				d.	transition metals
22.	When a met	al and a nonmetal react, the tends to lose electrons	s to fo	or	m a(n)	•	

		weight and a				
	a. 1-	metal, cation	с.	metal, anion		
	D.	nonmetal, cation	a.	nonmetal, anion		
23.	23. When a metal and a nonmetal react, the tends to gain electrons to form a(n)					
	a. h	metal, cation	с. а	metal, anion		
~ 1	D.		a.	nonmetal, anion		
24.	The empirica	I formula of a compound with molecules containing 14 carbon atoms, I	16 h	ydrogen atoms & 8 oxygen atoms is		
	a. b	$C_{14}H_{16}O_8$	c.	СНО		
25			u.	C _{3.5} 114O ₂		
25.	what is the f	SrN	ons	Str.N.		
	a. h	SIN SraNa	c. d	SI3N4 SrNo		
26	The formula	of a solt is $\mathbf{V}(1)$. The V ison in this solt has 29 electrons. The motel V is	u.	51112		
20.		Ni	15	 		
	a. b	Fe	c. d	Pd		
27	The charge o	n the manganese in the salt MnE. is	u.	14		
21.	a a charge o	± 1	C	_1		
	a. b.	-2	d.	+3		
28	Aluminum re	-	ene	ral form AIX Element X is a natural diatomic		
20.	gas at room t	emperature. Element X must be	,ene			
	a.	oxygen	c.	sulfur		
	b.	fluorine	d.	nitrogen		
29.	All atoms of	a given element have the same .		-		
	a.	mass	c.	number of neutrons		
	b.	number of protons	d.	number of electrons and neutrons		
30.	An unknown	element is found to have three naturally occurring isotopes with atomic	c ma	asses of 35.9675 (0.337%), 37.9627 (0.063%) and		
	39.9624 (99	.600%). Which of the following is the known element?				
	a.	Ar	c.	К		
	b.	Cl	d.	Ca		
31.	Of the follow	ring, only is <u>not</u> a metalloid.				
	a.	В	c.	Al		
	b.	Si	d.	Ge		
32.	Of the choice	es below, which one is <u>not</u> an ionic compound?				
	a.	PCl ₅	c.	MoCl ₆		
	b.	RbCl	d.	PbCl ₂		
33.	Which metal	does not form cations of differing charges?				
	a.	Na	c.	Cu		
	b.	Co	d.	Fe		
34.	Compared to	the charge and mass of a proton, an electron has				
	a.	the same charge and a smaller mass	с.	an opposite charge and a smaller mass		
	b.	the same charge and the same mass	d.	an opposite charge and the same mass		
35.	When alpha pof the volume	particles are used to bombard gold foil, most of the alpha particles pass	thro	bugh undeflected. This result indicates that most		
	a.	deuterons	c.	protons		
	b.	neutrons	d.	unoccupied space		
36.	Which symbol	ols represent atoms that are isotopes?				
00.	a.	C-14 and N-14	c.	I-131 and I-131		
	b.	O-16 and O-18	d.	Rn-222 and Ra-222		
37.	Atoms of ele	ments in a group on the Periodic Table have similar chemical properties	s. T	his similarity is mostly due to the atoms'		
- • •	a.	number of principal energy levels	с.	atomic numbers		
	b.	number of valence electrons	d.	atomic masses		

38. What is the molar mass of K_2CO_3 ?

a. 138 g/mol	c.	99 g/mol				
b. 106 g/mol	d.	67 g/mol				
39. What is the total number of atoms contained in 2.00 moles of nickel?						
a. 58.9	c.	6.02 x 10 ²³				
b. 118	d.	$1.2 \ge 10^{24}$				
40. What is the percent by mass of oxygen in magnesium oxide, MgO?						
a. 20%	c.	50%				
b. 40%	d.	60%				
41. What is the mass in grams of 3.0×10^{23} molecules of CO ₂ ?						
a. 22 g	c.	66 g				
b. 44 g	d.	88 g				
42. The mass number of an atom is equal to:						
a. protons + electrons	c.	protons + neutrons				
b. electrons + neutrons	d.	protons + neutrons + electron				
43. Which pair of atoms constitutes a pair of isotopes for the same element?						
14 X 14 Y		20 X 21 Y				
a. $6 \wedge 7 \wedge$	c.					
^{17}X ^{17}X		${}^{14}X$ ${}^{12}X$				
b. 9 🔨 8 🔨	d.	6 6 7				
44. What is the atomic number of Phosphorus?						
a. 15	с.	30.97376				
b. 30	d.	31				
45. What term is used to describe the spitting of two nuclei?						
a. fusion	с.	ionization				
b. fission	d.	deionization				
46. Which of the following puts elements in the correct order of increasing atomic radi	us?					
a. CI, BI, P	С.	Si, F, Cl				
b. Sr, Mg, Al	a.	B, Li, K				
47. What particle goes in the blank below?						
$2_{84}^{2}PO \rightarrow 2_{82}^{2}PD + _$	C	gamma ray				
b beta particle	d.	beta emission				
48. This type of radiation is released when $Rn - 224$ to $Po - 220$.	u.					
a. alpha particle	c.	gamma ray				
b. beta particle	d.	beta emission				
49. What is the missing product of the following?						
$^{230}_{90}Th \rightarrow ^{0}_{-1}e + _$						
^{230}Th	C	231 4 6				
b $\frac{230}{4c}$	d.	230 Da				
0. 89410	u.	91 ¹ u				
50. Which of the following is the most penetrating?						
a. alpha particle	c.	gamma ray				
b. beta particle	d.	all are essentially equa				
G. Other Information & Tips						

- You will have 50 minutes for the performance task and 90 minutes for the multiple choice test.
- Bring two #2 lead pencils and a good eraser.
- Bring something to study or read after you finish the test
- *Try to get a good night's sleep.*

- Eat a good breakfast. This will help put you in a good mood and help your brain function.
- Drink water (H₂O) & avoid caffeine (C₈H₁₀N₄O₂) & sugar (C₁₂H₂₂O₁₁)