
PhET Concentration Lab

Name:	Pd:	
	. 41	

Adapted from the University of Colorado.

Website: https://phet.colorado.edu/sims/html/concentration/latest/concentration en.html

Familiarize yourself with the various functions of the simulation by clicking and moving the various parts.

PART 1 - EFFECT OF CHANGING THE AMOUNT OF SOLUTE AND SOLVENT

- 1. Click RESET
- 2. Move the Concentration Probe into the liquid.
- 3. Shake some Drink mix into the water. Continue to add solute until the concentration reading is between 4 & 5.
 - a. What happened to the concentration as more solute is added?
 - b. What units of concentration are used for the concentration reading on the concentration probe? ______
 - c. What happens to the color of the solution as more solute is added?
 - d. What is the relationship between concentration and color?
- 4. Now add more water with the valve on the upper left.
 - a. What happens to the concentration as the quantity of water increases?
 - b. Explain why. (Mention what is happening to the quantity of solvent and solute)
- 5. Now **Remove some solution** with the valve on the lower right.
 - a. What happens to the concentration as the quantity of water decreases?
 - b. Explain why. (Mention what is happening to the quantity of solvent and solute)
- 6. Now **Remove water with the Evaporation Slider Bar** on the bottom.
 - a. What happens to the concentration as the quantity of water decreases? ______
 - b. Explain why. (Mention what is happening to the quantity of solvent and solute)

	IRT 2 - SATURATION
	Click RESET.
2.	Switch to a different Compound by selecting the Drop Down Menu called SOLUTE. Select CuSO ₄ (If you don't
	know what this is, look it up).
3.	Shake to add CuSO ₄ until a saturated solution is created.
	a. How do you know when a saturated solution is created?
	b. Move the Concentration Probe into the liquid. What is the concentration? (Include Units)
	c. Add more solute. What happens to the concentration? (Explain why)
PA	RT 3 - CONTROLLING THE CONCENTRATION
	Click RESET.
	Select CuSO ₄ from the Drop Down Menu called SOLUTE.
	Shake to add enough to create a 0.5 Molar Solution in the ½ liter of water originally in the beaker.
	Calculate the number of moles of CuSO ₄ in the beaker using the equation for molarity. Show your work below.
٦.	calculate the namber of moles of easos in the seaker asing the equation for molarity. Show your work selow.
_	Calculate the mass in grams of CuSO, that was added to the heaker to achieve a 0.5 Molar solution
٥.	Calculate the mass in grams of CuSO ₄ that was added to the beaker to achieve a 0.5 Molar solution.
_	
6.	Predict the concentration if the solution is diluted to a volume of 1 liter. Show the calculation of this
	concentration, include units in all your work.
	a. After you make the calculation: Add water until there is 1 L of water in the beaker.
	b. What is the concentration? Does this match your calculation? Yes or No
7.	Predict the concenteration if the solution is now concentrated (by using evaporation) to a volume of .75 liters
	(1/2 way between .5 liters and 1 liter). Show the calculation of this concentration, include units in all your work.
	a. After you make the calculation: Evaporate water with Evaporation Slider Bar until there is 0.75 L of solution
	in the beaker.
	b. What is the concentration? Does this match your calculation? Yes or No

b. How does the # moles of solute and mass of solute compare to the # of moles and mass of solute calculated in question 4 and 5. **Explain why these numbers compare as they do.**

8. Using the current concentration & volume, calculate the number of moles of solute in the solution. Show your

a. Calculate the mass in grams of solute for the current concentration and volume.

calculation with units.

10		Fill the beaker to a volume of 1 liter and check the concentration. What is the concentration?en the Remove Water Valve (on the lower right) until there is 0.5 L of solution in the beaker.		
	-	What happened to the concentration when ½ of the solution was allowed to run out? (Explain why in terms of the amount of solute and solvent)		
	b.	Using the current concentration & volume, calculate the number of moles of solute in the solution. Show your calculation with units.		
	c.	How does the # moles of solute compare to the # of moles of solute calculated in question 4. Explain why these numbers compare as they do.		
11. Predict the concentration if the solution is diluted to a volume of 1 liter. Show the calculation of this concentration, include units in all your work.				
	a.	After you make the calculation: Add water with the valve until there is 1 L of water in the beaker .		
		What is the concentration? Does this match your calculation? Yes or No		
SUMMARY OF LEARNING OBJECTIVES — CIRCLE THE WORD OR PHRASE THAT BEST FITS THE STATEMENT.				
1.	Ad	ding solute (solid) to an unsaturated solution causes the concentration of the solution to: INCREASE /DECREASE/ REMAIN UNCHANGED		
2.	Ad	ding pure water to a saturated solution will cause the concentration of the solution to: INCREASE /DECREASE/ REMAIN UNCHANGED		
3.	Ad	ding a solid salt to a saturated solution causes the concentration of the solution to: INCREASE /DECREASE/ REMAIN UNCHANGED		
4.	Eva	aporation acting on an unsaturated solution causes the concentration of the solution to: INCREASE /DECREASE/ REMAIN UNCHANGED		
5.	Eva	aporation acting on a saturated solution causes the concentration of the solution to: INCREASE /DECREASE/ REMAIN UNCHANGED.		

9. **Predict the concentration & # of moles of solute** if water is added until the volume is 1 liter.