Guided Notes: pH

Name: Period:

<u>pH:</u>

- pH = _____ •
- acids have a _____
- bases have a _____ •
- neutral has a _____
- Increases by a factor of ______ between numbers on the pH scale • pH of 3 has ten times the [H+] of pH 4

pH and pOH:

pH Practice:

Calculate the pH of solutions having the following ion concentrations at 298K.

 $[H+] = 1.0 \times 10^{-2} M$

[OH-] = 8.6 x 10⁻⁶ M

Which of the solutions is more acidic?

pH Practice:

 $[H^+] = 3.75 \times 10^{-6}$

What is the pH of a solution with a pOH of 12.5?

Which of the solutions is more acidic?

Finding Ion Concentration:

[H+] = _____

Practice:

Calculate the $[H^+]$ in a solution with a pH of 2.37.

Calculate the $[H^+]$ concentration of a solution with a pOH of 8.5.

Strength of Acids and Bases:

- _____: refer to the # of moles of acid or base dissolved in a volume of solution •
- _____: refers to degree of ion formation
- ______ acids and bases ______ ionize (also called strong electrolytes)
- ex: HCl --> H+ + Cl
 - acids and bases have ______ ionization (establish equilibrium)
 - \circ ex: HC₂H₃O₂ <--> H⁺ + C₂H₃O₂⁻

Strong Acids: HCl, HI, HBr, HNO₃, H₂SO₄, HClO₄

Strong Bases: LiOH, NaOH, KOH, RbOH, Ca(OH)₂, Sr(OH)2, Ba(OH)₂

Any acids or bases not on this list are weak!

<u>Practice</u>

Calculate the pH of the following solutions:

0.10 M HI

2.4 x 10⁻⁵ M HNO₃

Measuring pH:

- _____: will change the color depending on the hydrogen ion concentration in solution, the color is then compared to a standard scale
- _____: more accurate than pH paper, contains electrode that are immersed in solution, will give a digital readout

Check for Understanding:

- 1. Calculate the pH of a solution that contains:
 - a. [H⁺]= 3.0 x10⁻⁸M
 - b. 0.050 M HNO₃
 - c. [H⁺] = 9.8 x10⁻² M
- 2. What is the $[H^+]$ in a solution that has a pH of 4.75?