## 2 Types of Reactions:

## Completion Reactions:

- Results in a complete conversion of reactants to products
- ex: $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{s})+2 \mathrm{NaNQ}(\mathrm{aq})$
- Will form ainsoluble solid precipitate or a gas
- Most reactionsDO NOT go to completion.
- Have a one-sided arrow


## 2 Types of Reactions:

Reversible Reactions:

- Can occur in both the forward and reverse directions ex: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \stackrel{\Longleftrightarrow}{\rightleftharpoons} 2 \mathrm{NH}_{3}(\mathrm{~g})$
- Reactants can form products (forward):

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})-->2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- Products can form reactants (reverse):

$$
2 \mathrm{NH}_{3}(\mathrm{~g})<--\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

- Both occur at the same time whenever all the substances are present.


## Chemical Equilibrium:

- A state in which the forward and reverse reactions take place atequal rates.

$$
\text { Forward rate }=\text { Reverse rate }
$$

- The amounts of the reactants and products are constant at equilibrium.
- Equilibrium isdynamic -- reactions are still occurring, although we may not be able to see it.


## Chemical Equilibrium:

- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})->2 \mathrm{NH}_{3}(\mathrm{~g})$



## Law of Chemical Equilibrium:

- At a given temperature, a chemical system may reach a state in which a particular ratio of reactant and product concentrations has a constant value.


## Law of Chemical Equilibrium:

- For example, if this is a reaction:


Then you get a constant


## Law of Chemical Equilibrium:

$$
\mathrm{Keq}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

Keq

- is called the equilibrium constant
- is a number that can be calculated by inserting the molarity of each substance
- has no unit (or label)
- changes with temperature


## Law of Chemical Equilibrium:

$$
\text { Keq }=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}=\frac{\text { products }}{\text { reactants }}
$$

If $\mathrm{Keq}>1$

- more products than reactants at equilibrium are favored
- products are favored

$$
\frac{5}{2}>1
$$

If $\mathrm{Keq}<1$

- more reactants than products at equilibrium are favored
- reactants are favored

$$
\frac{2}{5}<1
$$

Which do you think is better for business?

$$
K_{e q}>1
$$

## Law of Chemical Equilibrium:

$$
\operatorname{Keq}=\frac{[C]^{c}[D]^{d}}{[A]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

Homogeneous equilibrium: when all substances are in the same state of matter.

Heterogeneous equilibrium: when the substances are in more than one state of matter.
--NOTE: if any of the substances in the reaction la quids or solids, leave them out of the expression
--Only leavegases and aqueous solutions in the expression for Keq

## Example:

$$
\operatorname{Keq}=\frac{[C]^{c}[D]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

Write the equilibrium expression for the following equation:

$$
\mathrm{K}_{\mathrm{pq}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}
$$

Example:

$$
\text { Req }=\frac{[C]^{c}[D]^{d}}{[A]^{2}[B]^{b}}=\frac{\text { products }}{\text { reactants }}
$$

Write the equilibrium constant for the following equation:

$$
\begin{aligned}
& C\left(\mathrm{l}+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\langle--\rangle_{\mathrm{r}} \mathrm{CO}(\mathrm{~g})+\mathrm{H}(\mathrm{~g})\right. \\
& \mathrm{K}_{\mathrm{e}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
\end{aligned}
$$

Example:

$$
\operatorname{Keq}=\frac{[C]^{c}[D]^{d}}{[A]^{2}[B]^{b}}
$$

Calculate the Req for the reaction below when $[50.0160 \mathrm{M}$, $\left[\mathrm{SO}_{2}\right]=0.00560 \mathrm{M}$, and $[\mathrm{Q}]=0.0210 \mathrm{M}$. Are the products or the reactants favored?

$$
\begin{aligned}
& 2 \mathrm{SO}_{3}(\mathrm{~g})\langle--\rangle 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

