- Temperature is a measure of the _____ energy of the molecules in a sample.
- 2. A gas exerts pressure on its container because the molecules _____ with the walls.
- 3. According to the assumptions of KMT...
 - > The molecules of an ideal gas are in constant, _____ motion.
 - > The molecules of an ideal gas have no _____.
 - > Collisions in an ideal gas are completely _____
 - > There are no attractive or repulsive _____ in an ideal gas.

May 17-8:08 AM

Review:

- 1. Temperature is a measure of the **average kinchic** energy of the molecules in a sample.
- 2. A gas exerts pressure on its container because the molecules **Collinar** with the walls.
- 3. According to the assumptions of KMT...
 - > The molecules of an ideal gas are in constant, random motion.
 - > The molecules of an ideal gas have no ________.
 - > Collisions in an ideal gas are completely elastic
 - > There are no attractive or repulsive forces in an ideal gas.

Complete the chart below:

Relationship	Pressure	Volume	Temperature	# of moles
	increases	constant		constant
	increases		constant	constant
	constant		increases	constant
		constant	constant	increases

May 17-8:09 AM

Review:

Complete the chart below:

Relationship	Pressure	Volume	Temperature	# of moles
direct	increases	constant	1	constant
indirect	increases	↓	constant	constant
direct	constant	^	increases	constant
direct	7	constant	constant	increases

Use the graph to answer the following questions:

- 4. What letter represents the melting point?
- 5. What letter represents the substance in the gaseous phase?
- 6. Write the equation for the process happening as you move from C B -A.

May 17-8:09 AM

Review:

Use the graph to answer the following questions:

- 4. What letter represents the melting point?
- 5. What letter represents the substance in the gaseous phase?
- 6. Write the equation for the process happening as you move from C B -A.

- 7. What are the conditions for STP?
- 8. Calculate the volume of 5 moles of a gas at STP.
- 9. How many grams of H₂ gas are in a 10.0 L container at 2.00 atm and 30°C?

May 17-8:09 AM

Review:

7. What are the conditions for STP?

8. Calculate the volume of 5 moles of a gas at STP. $\sqrt{5.0.06} \times 1.273$

PV=
$$nRT$$
 $n=5$ moles of a gas at STP. $|V-5|V$. $|V-5|V$.

9. How many grams of H₂ gas are in a 10.0 L container at 2.00 atm and 30° C29

PV= n RT R=0.06al Latra = 804 mol H₂ × Invol H₃

PV= nRT R=0.06al
$$\frac{L\cdot atm}{m_1\cdot k}$$
 = 804molf;
P=2atm T=30°C+273=303k
V=10.0L $2\cdot 10=n\cdot 0.0821\cdot 303$ = 1.619;
N=?mol $\rightarrow 9$ $20=\frac{n\cdot 34.9}{24.9}$

REVIEW

10. A sample of 5.0 g of copper was heated from 20°C to 80°C. How much energy was used to heat Cu? (Specific heat capacity of Cu is 0.092 cal/g °C)

May 17-8:10 AM

REVIEW

10. A sample of 5.0 g of copper was heated from 20°C to 80°C. How much energy was used to heat Cu? (Specific heat capacity of Cu is 0.092) (°C)

$$q = 5.0g \cdot 0.092 \cdot 100$$

REVIEW

11. Calculate the $\Delta {\rm H^o}_{\rm rxn}$ using the chemical equation and $\Delta {\rm H^o}_{\rm f}$ values below.

$$NaOH(s) + HCI(g) ----> NaCI(s) + H2O(g)$$

 ΔH_f° (NaOH(s)) = -426.7 kJ/mol

 ΔH_{f}° (HCI(g)) = -92.3 kJ/mol

 ΔH_f° (NaCl(s)) = -411.0 kJ/mol

 $\Delta H_{f}^{o}(H_{2}O(g)) = -241.8 \text{ kJ/mol}$

May 17-8:12 AM

REVIEW

11. Calculate the $\Delta H^o_{\ rxn}$ using the chemical equation and $\Delta H^o_{\ f}$ values below.

 $\Delta H_f^{\circ}(NaOH(s)) = -426.7 \text{ kJ/mol}$

 $\Delta H_{f}^{\circ}(HCl(g)) = -92.3 \text{ kJ/mol}$

products - reactants

 $\sim \Delta H_f^{\circ}$ (NaCl(s)) = -411.0 kJ/mol

 $-\Delta H_{f}^{\circ}(H_{2}O(g)) = -241.8 \text{ kJ/mol}$

- 12. Determine if the following are exothermic or endothermic.
 - a. +∆H
 - b. -∆H
 - c. $H_2O(I) --> H_2O(g)$
 - d. $H_2O(I) --> H_2O(s)$
 - e. $2H_2O_2(I) --> 2H_2O(I) + O_2(g) + 200kJ$
 - f. $2 N_2 O_5(g) + 110 kJ --> 4NO_2(g) + O_2(g)$

May 17-8:12 AM

Review:

ears 1

- 12. Determine if the following are exothermic or endothermic.
 - a. +∆H endo
 - b. -∆H < ⊀0
 - c. $H_2O(I) --> H_2O(g)$ endo
 - d. $H_2O(1) --> H_2O(s) ex0$
 - e. $2H_2O_2(I) --> 2H_2O(I) + O_2(g) + 200kJ$
 - f. $2 N_2 O_5(g) + 110 kJ --> 4NO_2(g) + O_2(g)$ endo

13. In a household radiator, 1000. g of steam at 100.°C condenses (changes from gas to liquid). How much heat is released? (ΔH_{vap} = 40.6 kJ/mol)

May 17-8:13 AM

Review:

13. In a household radiator, 1000. g of steam at 100. °C condenses (changes from gas to liquid). How much heat is released? (ΔH_{vap} = 40.6 kJ/mol)

$$H=2 \times 1=2$$

 $0=1 \times 16=16$
 $189/mi$

- 14. Predict the sign of entropy for the following reactions:
 - a. $CIF(g) + F_2(g) --> CIF_3(g)$
 - b. $NH_3(g) --> NH_3(aq)$
 - c. $CH_3OH(I) --> CH_3OH(aq)$
 - d. $4NH_3(g) + 5O_2(g) --> 4NO(g) + 6H_2O(g)$

May 17-8:13 AM

Review:

14. Predict the sign of entropy for the following reactions: a. $CIF(g) + F_2(g) --> CIF_3(g)$

a.
$$CIF(g) + F_2(g) --> CIF_3(g)$$

b.
$$NH_3(g) \rightarrow NH_3(aq) - \Delta S$$

d.
$$4NH_3(g) + 5O_2(g) --> 4NO(g) + 6H_2O(g)$$