Quarter 3 Cumulative Review

Question 1

- According to the Kinetic Molecular Theory, gas particles
- a. Exert strong attractive and repulsive forces on each other
- b. Have inelastic collisions
- c. All move in the same direction
- d. Have the same average kinetic energy if at the same temperature

Mar 28-7:01 AM Mar 28-7:01 AM

Quarter 3 Cumulative Review

Question 1

- According to the Kinetic Molecular Theory, gas particles
- a. Exert strong attractive and repulsive forces on each other
- b. Have inelastic collisions
- c. All move in the same direction
- d. Have the same average kinetic energy if at the same temperature

Quarter 3 Cumulative Review

Question 2

- How many moles of carbon dioxide would you have in a 5.00 L container at 35.0°C and 1.22 atm?
 - a. 0.241 mol
 - b. 4.15 mol
 - c. 6.75 mol
 - d. 10.6 mol

Quarter 3 Cumulative Review Question 2 | 22.5=n.0.061.305 | 6.1 = 0.25.3 n. 24m1

How many moles of carbon dioxage, vsould you have in a 5.00 L container at 35.0°C and 1.22 atm? PV=nRT a. 0.241 mol b. 4.15 mol P=1.22atm c. 6.75 mol d. 10.6 mol

Mar 28-7:01 AM Mar 28-7:01 AM

Quarter 3 Cumulative Review

Question 3

- How much heat is required when 85.0 g of lead is heated from 10.0°C to 200.0°C? (specific heat of lead = $0.129 \text{ J/g} ^{\circ}\text{C}$
 - a. 17.3 J
 - b. 2.08×10^3 J
 - c. 2.30×10^3 J
 - d. 1.25×10^5 J

Quarter 3 Cumulative Review

Question 3

• How much heat is required when 85.0 g of lead is heated from 10.0 °C to 200.0 °C (specific heat of lead = $0.129 \text{ J/g} ^{\circ}\text{C}$ 9=mc DT 9=85.0.129.190

- a. 17.3 J
- (b.) 2.08 **c**.10³ J
 - c. 2.30×10^3 J

DT=1900

St=T1-T;

d. 1.25×10^5 J

Mar 28-7:01 AM Mar 28-7:01 AM

Ouestion 4

• Using standard heats of formation given in the table, calculate ΔH for the following reaction: $4HCl(g) + O_2(g) \longrightarrow 2Cl_2(g) + 2H_2O(g)$

a. -334.1 kJ

b. -149.5 kJ

c. -114.4 kJ

d. 114.4 kJ

Compound ΔH_0° (kJ/mol) HCl(g) -92.3 $H_2O(g)$ -241.8

Mar 28-7:01 AM

Mar 28-7:01 AM

Quarter 3 Cumulative Review

Question 5

- A decrease in entropy is seen when
 - a. NaCl (s) is dissolved in water
 - b. CaCO₃ (s) forms CaO (s) and CO₂ (g)
 - c. Hydrogen gas and oxygen gas form liquid water
 - d. Water evaporates

Quarter 3 Cumulative Review

Ouestion 5

- DS -disorder
- A <u>decrease</u> in entropy is seen when
 - a. NaCl (s) is dissolved in water $+\Delta$ S
- b. $CaCO_3$ (s) forms CaO (s) and CO_2 (g) $+\Delta$ \$
- C. Hydrogen gas and oxygen gas form liquid water
- d. Water evaporates 415

79

Mar 28-7:01 AM Mar 28-7:01 AM

Quarter 3 Cumulative Review

Question 6

- What is the molarity of a solution made with 2.50 g of sodium chloride dissolved in 125 mL of water?
 - a. 20.0 M
 - b. 0.342 M
 - c. 0.0200 M
 - d. 3.42 x 10⁻⁴ M

Mar 28-7:01 AM Mar 28-7:01 AM

Quarter 3 Cumulative Review

Ouestion 7

- How many milliliters of 12.0 M HCl are needed to make 500. mL of 2.50 M HCl?
 - a. 2400 mL
 - b. 104 mL
 - c. 16.7 mL
 - d. 0.0600 mL

Quarter 3 Cumulative Review **Ouestion 7** • How many milliliters of 12.0 M HCl are needed to make 500. mL of 2.50 M HCl? $M_1V_1 = M_2V_2$ a. 2400 mL M1=12.0M 12.V1=2.5.500 V1=?mL V1=104 M2=2.50M b. 104 mL c. 16.7 mL d. 0.0600 mL V2= 500

Mar 28-7:01 AM Mar 28-7:01 AM

Quarter 3 Cumulative Review

Question 8

- What would be the percent by mass of 35.0 g of CCl₄ dissolved in 500. g of benzene, C₆H₆?
 - a. 6.54 %
 - b. 7.00 %
 - c. 14.3 %
 - d. 15.3 %

Quarter 3 Cumulative Review

Question 8

• What would be the percent by mass of 35.0 g of CCl₄ dissolved in 500. g of benzene, C₆H₆?

(a.)5.54 %

b. 7.00 %

350 5359 x100 = 6.54%

c. 14.3 % d. 15.3 %

Mar 28-7:01 AM Mar 28-7:01 AM