2nd Law of Thermodynamics

- Entropy (S) is a measure of the disorder or randomness of the particles that make up a system.
- Entropy is the driving force in all **spontaneous** processes.
- The law of disorder: spontaneous processes proceed in a way that the disorder of the universe increases.
- Entropy is all about probability.
- This is the Second Law of Thermodynamics.

Feb 16-8:07 AM

Measuring Entropy

- Change of state.
 - > What state has the most entropy??
- Solids dissolving to form a solution.
 - > solutions have more entropy than solids and liquids
 - > s < l < aq (solution) < g
- Big particles broken down into little pieces.
 - > CaCO₃(s) --> CaO(s) + CO₂(g)
 - > more parts = more entropy
- Spreading out gases.
 - > great volume = greater entropy

Feb 16-8:07 AM

Calculating Entropy

$\Delta S = \Sigma \Delta S_f(products) - \Sigma \Delta S_f(reactants)$

What it means:

- $> -\Delta S = getting more ordered$
- > $+ \Delta S$ = getting more **disordered**

Feb 16-8:07 AM

Practice

Which has more entropy?

solid CO₂ or gaseous CO₂

Predict the sign of the entropy change:

• Solid NaCl is added to water to form a solution.

$$+\Delta S$$
 $g \rightarrow s$

• Water vapor condenses on a cold surface to form crystals.

Practice

Which has more entropy?

- A solution of potassium nitrate or solid potassium nitrate?

What is the sign of the change in entropy?

$$-- 2SO_3$$
 (g) \longrightarrow $2SO_2$ (g) + O_2 (g)

Feb 16-8:07 AM