Reminders

 $\frac{1000}{1} \text{ mL} = \frac{1}{L} \text{ L}$ $\frac{1}{2} \text{ mL H}_2\text{O} = \frac{1}{2} \text{ g H}_2\text{O (based on density of H}_2\text{O} = \frac{1}{2} \text{ l}$ $\frac{1000}{2} \text{ g} = \frac{1}{2} \text{ kg}$ Freezing point of water $\frac{0}{100}$ °C
Boiling point of water $\frac{1}{2}$

Mar 10-7:39 AM

Colligative Properties

Colligative Property: a property that depends only on the number of solute particles, and not the type of particle.

Examples of some colligative properties:

- 1. Freezing Point Depression
- 2. Boiling Point Elevation
- 3. Vapor Pressure Lowering

We will focus on Freezing Point and Boiling Point.

Apr 25-8:04 AM

Freezing Point Depression

What happens when something freezes (for example, water)?

- Decrease in energy slows molecules/atoms down
- Intermolecular forces have more effect (atoms have less energy to fight them)
- Frozen water (ice) molecules are in an orderly pattern.

What happens when you add a solute?

The addition of another substance (a solute) disrupts and prevents water molecules from forming an orderly pattern.

Freezing Point Depression: adding a substance to a pure solvent <u>lowers</u> the freezing point

Mar 10-7:41 AM

Boiling Point Elevation

Pure solvent

Solution containing nonvolatile solute

Solute particles also get in the way of a solvent's ability to boil thereby increasing the boiling temperature.

Boiling Point Elevation: adding a substance to a pure solvent *increases* the boiling point

Mar 10-7:45 AM

Dissociation Factor

Dissociation factor:

How many particles the solute will break in to in solution.

Dissociation Factor

Covalent compounds: will not dissociate \rightarrow i = 1Ionic compounds: will dissociate into ions \rightarrow i = # of ions per compound

*** The larger the dissociation factor, the lower the freezing point and higher the boiling point.***

**** Count the number of IONS NOT ATOMS

Dissociation Factor

examples

What is the dissociation factor for each compound? Which will raise the boiling point the most? Lower the freezing point the most?

- 1. AIPO
- 2. N₂O₄
- 3. LiCl
- Cal₂
 PCl₅
- 6. Pb(OH)₄
- 7. XeF₄
- 8. Cu₂CO₃

Mar 10-7:46 AM Mar 10-7:47 AM

Dissociation Factor

example

What is the dissociation factor for each compound? Which will raise the boiling point the most? Lower the freezing point the most?

```
1. AIPO<sub>4</sub> i = 2: AI<sup>3+</sup>, PO<sub>4</sub><sup>3-</sup>
2. N<sub>2</sub>O<sub>4</sub> i = 1: covalent
3. LiCl i = 2: Li<sup>+</sup>, CI<sup>-</sup>
4. CaI<sub>2</sub> i = 3, Ca<sup>2+</sup>, I<sup>-</sup>, I<sup>-</sup>
5. PCI<sub>5</sub> i = 1: covalent
6. Pb(OH)<sub>4</sub> i = 5: Pb<sup>4+</sup>, OH<sup>-</sup>, OH<sup>-</sup>, OH<sup>-</sup>
7. XeF<sub>4</sub> i = 1: covalent
8. Cu<sub>2</sub>CO<sub>3</sub> i = 3: Cu<sup>+</sup>, Cu<sup>+</sup>, CO<sub>3</sub><sup>2-</sup>
```

Mar 10-7:47 AM

solutionSalt.zip clipboard(20615).galleryitem