Chemistry Semester 2 Review

Unit 6 and 7: KMT and Gases, Thermochemistry

Vocab:

Molar volume
Ideal gas law
Ideal gas constant
Kinetic-molecular theory
Pascal
Pressure
calorimeter
chemical potential energy
energy
enthalpy
enthalpy (heat) of combustion
enthalply (heat) of reaction
entropy
heat
Hess's law
Joule
Law of conservation of energy
Law of disorder
Molar enthalpy (heat) of fusion

Molar enthalpy (heat) of vaporization
Specific heat
Spontaneous process
Standard enthalpy (heat) of formation
Surroundings
System
Thermochemistry
Universe

1. Temperature is a measure of the \qquad energy of the molecules in a sample.
2. A gas exerts pressure on its container because the molecules \qquad with the walls.
3. What are the four variables that describe a gaseous system?
4.
5.
6.
7.
8. Temperature must always be in \qquad when calculating gas law problems.
9. Standard pressure $=$ \qquad atm
10. Standard temperature $=$ \qquad $\mathrm{K}=$ \qquad degrees Celsius.
11. Answer the following questions with INVERSELY or DIRECTLY
a) How are pressure and temperature related? \qquad
b) Pressure and Volume? \qquad
c) Volume and Temperature? \qquad
12. What will happen to a balloon filled with helium gas when you take it from outside on a hot day to inside an air conditioned house?
13. How many moles of a gas will occupy 2.50 L at STP?
14. Calculate the volume that 3.60 grams of H_{2} gas will occupy at STP.
15. Use the reaction shown to calculate the mass of iron that must be used to obtain . 500 L of hydrogen at 24.3 degrees Celsius and 100.0 kPa of pressure.

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

12. What does each of the symbols below represent?
a) $\Delta \mathrm{H}$
b) $\Delta \mathrm{S}$
13. Define entropy and enthalpy.
14. Describe an endothermic and exothermic reaction.
15. Determine if the letter below is supporting an exothermic or endothermic reaction:
a) Products have more energy than the reactants
b) Reactants have more energy than the products
c) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d) $+\Delta \mathrm{H}$
e) $-\Delta \mathrm{H}$
f) Water freezing
16. In nature, do things tend to become more organized or more disordered? What law of thermodynamics is this?
17. Determine whether the change below supports an increase or decrease in disorder ($-\Delta \mathrm{S}$ or $+\Delta \mathrm{S}$)
a) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
b) $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g})$
c) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
18. The enthalpy of the products is 255 kJ and the enthalpy of the reactants is 335 kJ . Calculate the change in enthalpy and determine if the reaction is exothermic or endothermic.
19. Predict the sign of $\Delta \mathrm{S}_{\text {system }}$ for the following changes and explain your answer:
a) $\mathrm{ClF}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}_{3}(\mathrm{~g})$
b) $\mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{l}) \rightarrow \mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s})$

Unit 9: Rates and Equilibrium

Vocab:
Activated complex
Activation energy
Collision theory
Reaction rate
Transition state

Catalyst
Dissociation equations
reversible reaction completion reaction chemical equilibrium homogeneous equilibrium
heterogeneous equilibrium Le Chatelier's Principle Ksp
Keq
22. List the factors that affect the RATE of a chemical reaction and tell HOW they affect the rate.

5 Factors that affect the reaction rate:	How the factors alter the rate:

23. What is a catalyst? How is an enzyme like a catalyst? How do catalysts work?
24. In order for a reaction to occur, the reactants must \qquad with enough \qquad and the correct
25. The amount of energy needed for an effective collision is called the \qquad .
26. What happens to the rate of a chemical reaction over time? \qquad
27. In a chemical reaction that produces hydrogen 14.3 ml of gas was collected over a 20.0 second period. Calculate the rate of the reaction in $\mathrm{ml} / \mathrm{sec}$.
28. A double arrow signifies a \qquad reaction, while a single arrow signifies a \qquad reaction.
29. What causes a reaction to go to completion? The evolution of a \qquad or the formation of a
\qquad . Describe chemical equilibrium. Give an example.
30. Write the equilibrium constant expression for $4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \leftarrow \rightarrow 2 \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
31. If you calculate a number less than 1 for the constant expression above, what does that tell you?
32. At 773 K , the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ produces the following concentrations: [NO] $=3.49 \times 10^{-4} \mathrm{M}$; $\left[\mathrm{O}_{2}\right]=0.80 \mathrm{M} ;\left[\mathrm{NO}_{2}\right]=0.250 \mathrm{M}$. Write the equilibrium constant expression for the reaction, \& calculate the value of the equilibrium constant.
33. \qquad explains how an equilibrium system will respond to stress.
34. For the reaction given, complete the following table: $\mathbf{C}(\mathbf{s})+\mathrm{H}_{2} \mathbf{O}(\mathbf{l})+$ heat $\longleftrightarrow \mathbf{C O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$

Stress applied	Shift left, shift right, or no change?	What happens to the concentration of CO?
Cooling		
Adding water		
Adding a catalyst		
Removing H_{2}		
Decreasing volume		

35. For the reaction; Heat $+\mathbf{H}_{2(\mathrm{~g})}+\mathbf{I}_{2(\mathrm{~g})} \leftarrow \rightarrow 2 \mathrm{HI}_{(\mathrm{g})}$
A. How will an increase in temperature change the concentration of Hydrogen gas? \qquad
B. How will an increase in pressure affect the system? \qquad
C. Which direction will the addition of Iodine gas shift the system? \qquad What does this do to the concentration of Hydrogen gas?
36. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+$ heat $\longleftrightarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
a. List 2 stresses that you could apply to the equilibrium system to increase the $2 \mathrm{NO}_{2}(\mathrm{~g})$:
b. List 2 stresses that you could apply to the equilibrium system to increase the $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$:

Unit 8: Solutions

Vocab:
Dissociation equations
chemical equilibrium
homogeneous equilibrium
heterogeneous equilibrium
Le Chatelier's Principle
Ksp
Keq
Concentration
Insoluble
Molarity
Saturated solution
Solubility
Soluble

Solution Solvation Solvent Solute Supersaturated solution Unsaturated solution Dilution
37. Describe solute and solvent.
38. List the factors that affect solubility.
39. In general, the solubility of most solid substances \qquad as temperature increases. The solubility of gases, however, \qquad as temperature increases. Pressure only changes the solubility of \qquad .
a) Describe the rule "Likes dissolves Like".
b) What type(s) of compounds are soluble in water.
c) Circle the chemical(s) that are soluble in water. Cross out the one(s) that are not.
Fe (iron)
MgCl_{2}
$\mathrm{C}_{5} \mathrm{H}_{10}$
SiO_{2}
40. Describe the three types of solutions. Include how you could determine which solution is which. Saturated:

Unsaturated:

Supersaturated:
41. When you add more solvent to a solution, the solution becomes more \qquad .
42. What unit do chemists use most often to describe concentration? \qquad
43. Calculate the molarity for each of the following solutions:
a. 3.4 moles of NaCl dissolved in 0.956 L of water
b. 1.28 g of CuSO_{4} dissolved in 150 mL of water
44. How would you prepare 500 mL of 1.5 M NaCl from solid NaCl ? Show any calculations needed.
45. A . 600 L sample of a 2.50 M solution of KI contains what mass of KI?
46. What is the volume of 0.1250 M solution of AgNO_{3} that contains 1.75 moles of solute.
47. How many mL of 2.0 M KOH stock solution do you need to prepare 100 mL of 0.40 M KOH .
48. What would be the new molarity if you diluted 250 mL of 6.0 M HCl and up to 800 mL ?

Unit 10: Acids and Bases

Vocab:
Arrhenius model Conjugate acid-base pair
Acid-base indicator
Amphoteric (amphiprotic)
Bronsted-Lowry model
Conjugate acid

Conjugate base
End point
Equivalence point
K_{w}
hydronium ion neutralization reaction pH
pOH
titration
49. List 5 properties of acids and 5 properties of bases.
1)
1)
2)
2)
3)
3)
4)
4)
5)
5)
50. Describe the differences between an Arrhenius and a Bronsted-Lowry acid and base.
51. Identify the Bronsted-Lowry acid-base pairs in each of the following reactions. Label each substance ($\mathrm{BB}, \mathrm{BA}, \mathrm{cb}, \mathrm{ca}$).
a. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}<--->\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
b. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}<--->\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
52. Answer the following questions about electrolytes:
a) What is a strong electrolyte?
b) What is a non-electrolyte?
\qquad
c) Give an example of each: strong electrolyte - \qquad Non-Electrolyte - \qquad
53. \qquad acids \& bases dissociate (ionize) completely. \qquad acids \& bases only slightly dissociate (ionize).
54. Circle the strong base and put a box around the strong acid.

HCl	NH_{3}	$\mathrm{CH}_{3} \mathrm{COOH}$	NaOH

55. What are the formulas for hydroxide \qquad and hydronium \qquad ?
56. If the hydronium concentration of a solution is $2.34 \times 10^{-3} \mathrm{M}$, what is the pH ?
57. If the concentration of HClO_{4} is 0.00025 M , calculate the pH and pOH .
58. What is the $\left[\mathrm{H}^{+}\right]$concentration of a solution with a pH of 2.687 ?
59. Calculate the pH and the pOH for a $6.57 \times 10^{-5} \mathrm{M}$ solution of LiOH .
60. An acid + a base yields a \qquad $+$ \qquad . This type of reaction is called \qquad
61. The process used to find the concentration of an acid or a base is a \qquad -
62. What do we call it when the moles of acid = moles of base? \qquad
63. What do we add to signal the end of the titration?
64. For the following types of titrations, give the pH range for the equivalence point:
a) Weak acid-strong base
b) Strong acid-strong base
c) Strong acid- weak base
65. Which indicator is best for a strong acid-strong base titration? Why?
66. If 25 mL of 0.20 KOH were used to titrate $15 \mathrm{~mL}^{\text {of }} \mathrm{H}_{2} \mathrm{SO}_{4}$, what is the molarity of the acid? You must first complete and balance the equation. Show your work for the calculation.

$$
\ldots \mathrm{KOH}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow
$$

67. 75.0 ml of .250 M nitric acid, HNO_{3}, reacts with 25.5 ml of potassium hydroxide, KOH . What is the molarity of the base? Be sure to write a balanced chemical equation first.
68. What is the molarity of $\mathrm{Ca}(\mathrm{OH})_{2}$ solution if 30.5 ml of the solution is neutralized by 36.6 ml of .250 M HBr ? $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HBr} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaBr}_{2}$
